
e
e
e
e
e

uuquclql

tones
mexIco 87185 and Liv--

Sandia is a r Riprcgram laboratory by Sikndia Corporation,
a lrtin Company, for tates Department of Energy’s

clear Security Adminis ~ltract DE-AC04-94-AL85000.
., dZ.” I

Approved far

-

iissemination unlimited.

ia National laboratories

Issued by Sandia National Laboratories, operated for the United States Department of Energy by
Sandia Corporation.

NOTICE: This report was prepared as an account of work sponsored by an agency of the United
States Government. Neither the United States Government, nor any agency thereof, nor any of
their employees, nor any of their contractors, subcontractors, or their employees, make any
warranty, express or implied, or assume any legal liability or responsibility for the accuracy,
completeness, or usehlness of any information, apparatus, product, or process disclosed, or
represent that its use would not infringe privately owned rights. Reference herein to any specific
commercial product, process, or service by trade name, trademark, manufacturer, or otherwise,
does not necessarily constitute or imply its endorsement, recommendation, or favoring by the
United States Government, any agency thereof, or any of their contractors or subcontractors. The
views and opinions expressed herein do not necessarily state or reflect those of the United States
Government, any agency thereof, or any of their contractors.

Printed in the United States of America. This report has been reproduced directly from the best
available copy.

Available to DOE and DOE contractors from
U.S. Department of Energy
Office of Scientific and Technical Information
P.O. Box 62
Oak Ridge, TN 3783 1

Telephone: (865)576-8401
Facsimile: (865)576-5728
E-Mail: revorts@,adonis.osti.gov
Online ordering: httD://www.doc.zov/bridee

Available to the public from
U.S. Department of Commerce
National Technical Information Service
5285 Port Royal Rd
Springfield, VA 22161

Telephone: (800)553-6847
Facsimile: (703)605-6900
E-Mail: orders@ntis.fedworld.gov
Online order: hM,:ll~w.ntis.~ovlhel~iorde~ethods.asD?loc=7-4-0#onlinc

mailto:revorts@,adonis.osti.gov
mailto:orders@ntis.fedworld.gov

SAND2002-4016
Unlimited Release

Printed December 2002

SIERRA Framework Version 3:
h-Adaptivity Design and Use

James R. Stewart and H. Carter Edwards
Production Computing/SIERRA Architecture Department

Engineering Sciences Center
Sandia National Laboratories

Box 5800
Albuquerque, NM 87 195-0827

Abstract
Ths paper presents a hgh-level overview of the algorithms and supporting func-
tionality provided by SIERRA Framework Version 3 for h-adaptive hte-element
mechanics application development. Also presented is a fairly comprehensive
description of what is required by the application codes to use the SIERRA h-
adaptivity services. In general, the SIERRA framework provides the hctionality
for hierarchically subdividing elements in a distributed parallel environment, as
well as dynamic load balancing. The mechanics application code is required to
supply an a posteriori error indicator, prolongation and restriction operators for the
field variables, hanging-node constraint handlers, and execution control code. This
paper does not describe the Application Programming Interface (API), although
references to SIERRA framework classes are given where appropriate.

Acknowledgement

We would like to thank Lee Taylor for providing the figures and much of the text in Section 4.2,
and Kevin Copps for providing Fig. 4.1. We also thank James Overfelt and Nathan Crane for
reviewing the manuscript. Finally, we thank Rhonda Reinert of Technically Write, Inc. for
providing substantial technical editing and formatting assistance.

a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a

a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a 4

a

0

a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a

a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a

a

Contents

1 Overview .. 7

2 Framework Adaptivity Services 9

2.1 Parallel Mesh Refinement and Unrekement . 9

2.2 Dynamic Load Rebalancing . 12

3 SIERRA Default h-Adaptive Strategy 14

4 Responsibilities of Application Codes 15

4.1 A Posteriori Error Estimation . 15

4.2 Prolongation and Restriction Operators . 17

4.3 Hanging-Node Constraint Handling . 21

4.4 Execution Control . 22

Figures
1.1 General adaptive algorithm applicable to most applications . 7
1.2 Composition of the “Global Mesh Update” service . 8
2.1 Adaptive mesh refinement process including global enforcement of the 2: 1 maximum

refinement-level ratio . 10
2.2 Adaptive mesh unrefinement process . 10
2.3 Cases that violate the unrefinement requirements . 11
2.4 Refinement templates as defined for the quadrilateral and triangle elements 11
2.5 Dynamic load rebalancing with the genesis-extent-only option activated 13
2.6 Dynamic load rebalancing without the genesis-extent-only option 14
4.1 Generation by SIERRA of a node-based element patch for node x 16
4.2 Obtaining the broken “truth” mesh . 17
4.3 Copy prolongation operator . 18
4.4 Copy nearest integration-point prolongation operator . 19
4.5 Interpolate prolongation operator . 19
4.6 Average restriction operator . 20
4.7 Average nearest integration-point restriction operator . 20
4.8 Interpolate restriction operator . 21
4.9 Creation of hanging nodes following adaptive refinement . 21
4.10 Example of execution control (pseudo) code driving the adaptivity process 23

5

Intentionally Left Blank

e
e
e
e
e
e
e
e
e
e
e
e
e
e
e
e
e
e
e
e
e
e
e
e
e
e
e
e
e
e
e
e
e
e
e
e
e
e
e
e
e
e 6

e

e
e
e
e
e
e
e
e
e
e
e
e
e
e
e
e
e
e
e
e
e
e
e
e
e
e
e
e
e
e
e
e
e
e
e
e
e
e
e
e
e
e
e

I Overview
Support for h-adaptivity is one of the advanced services provided by SIERRA. This paper
describes at a high level the algorithms and supporting functionality available in SIERRA
Framework Version 3 for developing h-adaptive finite-element mechanics applications. We also
describe what is needed by the mechanics code for using the h-adaptivity services. This paper is
not intended to be a reference for the Application Programming Interface (API). We recommend
consulting the SIERRA header files for those details. The primary interface to this set of services
is found in the Fmwk-HAdapt class (see Fmwk-HAdapt . h). References to other SIERRA classes
are also given in this paper where appropriate. A description of the core SIERRA Framework
Version 3 theory and design is given in Ref. 1. It is assumed herein that the reader has some
familiarity with the contents of that document.

Adaptivity is defined to be the process of locally increasing the computational mesh resolution in
order to achieve a desired solution accuracy more efficiently. Adaptivity can also be used to
achieve a more accurate solution for a fixed amount of resources (e.g., computer memory).
Without adaptivity, the only alternative (for a given solution method) is to globally increase the
mesh resolution. Depending on the particular problem, this can result in a large number of
unneeded degrees of freedom, in turn leading to a high solution cost. The local increase of mesh
resolution in an adaptive computation can be achieved in various ways. In h-adaptivity, the mesh
is refined by locally generating smaller elements, i.e., by decreasing the size h of the elements that
contribute the largest errors. Other types of adaptivity includep-adaptivity (locally increasing the
order of the finite element shape functions), hp-adaptivity (a combination of h andp-adaptivity),
and r-adaptivity (relocating nodes to locally achieve smaller elements).

There are many different steps needed for an adaptive computation, and there is a clear separation
as to which of these steps are “framework” and which are “application.” A general overview of
the steps composing the adaptive algorithm (applicable to most applications) is given in Fig. 1.1.

r Estimate Solution
Solve Physics - Error Distribution

Application SIERRA

Figure 1.1. General adaptive algorithm applicable to most applications. Responsibilities
of the framework and application are shown. The marking of elements (the “adaptive
strategy”) can be implemented either by the framework (for a mechanics-independent
strategy) or by the application (for a mechanics-dependent strategy).

7

e
e
e
e
e
e
e
e
e
e
e
e
e
e
e
e
e
e
e
e
e
e
e
e
e
e
e
e
e
e
e
e
e
e
e
e
e
e
e
e
e
e
e

In general, SIERRA provides the parallel mesh refinement and unrefinement steps, as well as
dynamic load rebalancing. Those services are all part of the “Global Mesh Update” step depicted
in Fig. 1.2.

SIERRA provides standard h-refinement of meshes, i.e., elements are subdivided into a given
number of topologically compatible children. Upon unrefinement, the child elements are removed
and the original parent element is restored. The application “marks” each element for refinement,
unrefinement, or neither, based on some error criterion. The framework then takes over and carries
out the requested mesh adaptation.

Utilizing other SIERRA services, application-specific functionality such as the error indicator and
prolongation (and restriction) operators for the field variables can easily be plugged in. It may also
be desired to call the error estimator without doing any adaptivity. This flexibility is completely
controlled by the application code.

Restrici Prolong
Variables Variables a

e Rebalancing is done when the mesh is “smallest”!

Figure 1.2. Composition of the “Global Mesh Update” service. This
service is composed of three steps: mesh unrefinement, followed by
dynamic load rebalancing, followed by mesh refinement.

The application developer controls how many times the global mesh update is executed. For
transient calculations, this sequence can be executed multiple times within a time step. A refined
element is referred to by the level of refinement, which is the number of (net) refinement steps
required to generate that element. To control mesh gradation, the framework enforces a maximum
2: 1 ratio of refinement levels of adjacent elements (this step is shown in Fig. 1.1). This might
cause elements that have not been designated for refinement by the application to be refined
anyway.

The 2: 1 ratio is globally enforced, i.e., refinement on a given processor may trigger refinement on
other processors. The constrained hanging nodes that appear along a refinement boundary must
be appropriately handled by the application code. Importantly, refinement always takes
precedence over unrefinement. For example, an element that has been marked for unrefinement
would not be unrefined if doing so would fail to maintain the maximum 2: 1 refinement-level ratio.

In the following sections we describe in more detail both the framework components of adaptivity
and the responsibilities of application codes.

8

2 Framework Adaptivity Services
As indicated in Fig. 1.1, SIERRA provides the global mesh update as well as the 2: 1 refinement-
level enforcement. The global mesh update, as shown in Fig. 1.2, consists of mesh unrefinement,
dynamic load rebalancing, and mesh refinement (in that order). Each of these steps is described in
more detail in this section. In addition, SIERRA provides a default mechanics-independent h-
adaptive strategy. Through the use of C++ virtual methods, SIERRA allows an application code to
override this default. For example, an error-based h-adaptive strategy may be developed to work
in conjunction with a particular error estimator. SIERRA does not provide a default a posteriori
error indicator or error estimator. These are mechanics specific and must be supplied by the
application code. The default h-adaptive strategy is also described in this section.

2.1 Parallel Mesh Refinement and Unrefinement
Mesh refinement is carried out by hierarchically subdividing elements. The newly created, refined
elements (the children) become active in the subsequent computation. However, the coarse parent
element is retained in the data structure and becomes inactive. An element may only be unrefined
back to level 0. That is, if the element does not have children, it cannot be unrefined, implying that
a mesh can get no coarser than the genesis mesh. The genesis mesh is the original mesh read from
the input file. Once an element has been unrefined, each of the child elements (along with any
faces, edges or nodes that were used only by the children) is deleted fi-om the mesh data structure,
and the previously inactive parent element becomes active again.

Remark
An alternative strategy would be to allow arbitrary unrefinement to any mesh coarseness. For
example, unrefinement (and refinement) could be implemented using local mesh
manipulations (see, for example, Ref. 2). While this is a desirable feature, it is difficult to
implement for certain element topologies such as hexahedra. One could also completely
remesh the domain, but this is prohibitively expensive in three dimensions, and perhaps
impossible to make robust in parallel. SIERRA is driven by the requirement to support many
different types of element topologies including hexahedra, tetrahedra, pyramids, beams, and
wedges (possibly occurring simultaneously in the mesh). This requirement led to the design
decision to retain parent elements in the data structure, which allows refinement and
unrefinement to topologically compatible child and parent elements, respectively, to be easily
obtained in a parallel environment.

The refinement process is depicted in Fig. 2.1 for an initial mesh of four quadrilateral elements.
When an application marks an element for refinement (denoted by “R’ in the figure), the
framework takes over and produces the desired refinement. Recall that the adaptation can take
place iteratively. If a child element is subsequently refined as shown in the middle picture in Fig.
2.1, the framework also refines adjacent (unmarked) elements to enforce the 2: 1 maximum
refinement-level ratio. As shown in the picture on the right, this enforcement may trigger a
communication step to force elements that may be on an adjacent processor to also be refined.
The resulting adaptive mesh is independent of parallel decomposition!

9

R = Refine element 2:l refinement ratio enforced

Figure 2.1. Adaptive mesh refinement process including global enforcement of the 2:l
maximum refinement-level ratio.

Although not available as of the release of SIERRA Framework Version 3.01, the capability for
snapping new nodes to the actual geometry is planned. This capability will be used for new nodes
placed on nonplanar surfaces or material interfaces, and is critical for accurately representing the
geometry as the mesh is refined.

The unrefinement process is shown in Fig. 2.2. When an application marks each child of a
particular parent element for unrefinement (denoted by “U” in the figure), the framework takes
over and produces the requested unrefined mesh.

U = Unrefine element

Figure 2.2. Adaptive mesh unrefinement process.

Unrefinement can occur only if the following criteria hold:
All of a parent’s child elements have been marked for unrefinement.
Unrefinement will not cause the maximum-allowable 2: 1 refinement-level ratio to be

These cases are shown in Fig. 2.3.
exceeded.

U = Unrefine element

Figure 2.3. Cases that violate the unrefinement requirements. In
the first case, not all of the parent's children are marked. In the
second case, unrefinement would break the 2:l maximum
refinement-level ratio. In either case the framework ignores the
unrefinement requests.

SIERRA uses a refinement template to define the topologies of child elements. In general, these
topologies must be compatible with the parent topology, in the sense that the resulting shapes on
the boundaries of parent elements must allow for (child) mesh continuity and validity across those
boundaries. In the simplest cases, a hexahedron is subdivided into eight child hexahedrons, a
tetrahedron is subdivided into eight child'tetrahedrons, and a wedge (three quadrilateral faces and
two triangular faces) is subdivided into eight child wedges. The two-dimensional examples of a
quadrilateral and a triangle are shown in Fig. 2.4. In all of these examples, the child mesh is
formed by connecting the midpoints of the parent edges to form a valid subdivision of the parent
element.

I
Figure 2.4. Refinement templates as defined for the
quadrilateral and triangle elements.

11

e
e
e
e
e
e
e
e
e
e
e
e
e
e
e
e
e
e
e
e
e
e
e
e
e
e
e
e
e
0
e
e
e
e
e
e
e
e
e
e
e
e
e

2.2 Dynamic Load Rebalancing
Following the mesh unrefinement step and preceding the mesh refinement step, the application
can request that the framework dynamically rebalance the mesh among the processors. As
indicated in Fig. 1.2, the steps are done in this order so that rebalancing occurs when the mesh is
smallest (to minimize the communication overhead). Since rebalancing is an option, the
application can turn it on or off at any time. For example, the application could choose to only
rebalance every other refinement iteration. Alternatively, the application could compute a measure
of “balance,” then turn on rebalancing only if it is needed.

The application is responsible for defining the computational load on each element (the element
load measure) which is then used by the partitioning algorithm. The framework provides methods
for registering the element load measure variable on each element (see Fmwk-Region . h). The
default value for the load measure is 1 .O. Since load rebalancing occurs before mesh refinement,
the load measure on to-be-refined elements must be adjusted to account for the load following
refinement. This adjustment is handled by the framework. Before calling the partitioning
algorithm, the framework multiplies each to-be-refined element (i.e., each currently active future
parent) by the number of children that parent will produce. It is assumed that the element load
measure of the children will be the same as that for the parent.

The determination of a new, load-balanced partition of the mesh is carried out by the Zoltan
dynamic load-balancing library [3]. The framework then uses this partition to redistribute the
mesh among the processors. The mesh-partitioning algorithm is limited to those available in
Zoltan, and can be specified by the application. The SIERRA interface to Zoltan is given in the
Fmwk-Rebalance class (see Fmwk-Rebalance . h).

Remark
The complete functionality for dynamic load rebalancing without using h-adaptivity is
available to the application through the Fmwk-Rebalance interface. For example, this might
be useful for calculations with chemical reactions where the workload in each element varies
depending on the number of chemical species present.

The framework provides an option for restricting the scope of the rebalancing to genesis extent
only. The interface to this option is given in the Fmwk-HAdapt class (see Fmwk-HAdapt . h). The
description and purpose of this option are described next.

Rebalancing with Genesis-Extent-Only Option

The genesis extent refers to a mesh extent (i.e., a set of mesh objects) as defined in SIERRA (see,
e.g., Fmwk-MeshExtent . h). It is equal to the original mesh read from the mesh input file. When
the genesis-extent-only option is activated, an entire genesis-element family hierarchy (i.e.,
original element plus all descendants) remains together on a processor at all times. In other words,
parents and children are never allowed to split among the processors. This does not mean that they
must remain on the same processor for all time, however. It does mean that if the dynamic load-
rebalancing step moves an element, the entire genesis-element family hierarchy must move with it.

12

e
e
e
e
e
e
e
e
e
e
e
e
e
e
e
e
e
e
e
e
0
e
e
e
e
e
e
e
e
e
e
e
e
e
e
e
e
e
e
e
e
e
e

An example of rebalancing with the genesis-extent-only option is shown in Fig, 2.5. In this
example a genesis mesh of four quadrilateral elements is partitioned between two processors. It is
assumed that the application code iteratively marks the element in the lower-left corner for
refinement. After three refinement iterations, the mesh in the right picture is produced. With the
genesis-extent-only option, the children (and grandchildren, etc.) of the original lower-left
element cannot be split between the two processors. Therefore, the best the load balancer can do
is produce the mesh with 3 elements on processor 0 (PO) and 10 elements on processor 1 (Pl).
(This is only marginally better than if dynamic load balancing was not performed at all.)

Genesis Mesh
P I I
Mesh after 3 refinements:
- PO: 3 elements
- P I : 10 elements

Figure 2.5. Dynamic load rebalancing with the genesis-extent-only option activated.

The trade-off for choosing the genesis-extent-only option is that less communication is required at
the expense of a possibly lower-quality partition. The additional communication required for the
general load-balancing case (i.e., genesis-extent-only not activated) involves parents and off-
processor children. If an element is to be unrefined, then its children must all exist on the same
processor for that unrefinement to occur. In SIERRA, regardless of the genesis-extent-only
option,parents with no grandchildren are always kept on the sameprocessor with all of their
children. In other words, the children of these parents are not allowed to move independently of
their parent, since these parents are candidates for unrefinement. If grandchildren (and beyond)
exist, however, then the children are allowed to independently migrate to another processor (in the
general case).

The additional expense for the general case is two-fold: (1) communication lists must be
generated and stored for connecting parents with their off-processor children, and (2) any just-
unrefined children must be moved back on the same processor as their parent ifthat parent will no
longer have any grandchildren following the subsequent refinement step. (This step is to re-unite
those children with their parents, a requirement mentioned in the previous paragraph.) The second
step involves a lot of bookkeeping and communication since the children of a future one-
generation parent (parents without grandchildren following the subsequent refinement) might be
spread among several different processors.

For many problems the genesis-extent-only option will likely work well. In general, it is
recommended that this option be used, and turned off only ifit is evident that a sufficiently
balanced load cannot otherwise be achieved. The example shown in Fig. 2.5 represents a worst-

13

a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a

case scenario-refinement into a corner. For the general load-balancing case (genesis-extent-only
turned off), a much more balanced mesh is possible. This case is shown in Fig. 2.6. In the picture
on the right, three great-grandchildren of the lower-left genesis element have been migrated off P 1
onto PO.

Genesis Mesh I
Mesh after 3 refinements:
- PO: 6 elements - PI: 7 elements

Figure 2.6. Dynamic load rebalancing without the genesis-extent-only option. In
this example, a much more balanced mesh is obtained.

3 SIERRA Default h-Adaptive Strategy
The h-adaptive strategy is the process of converting element error indicators to an element
refinement marker (see Fig. 1.1). SIERRA allows for three possible values of this marker: refine,
unrefine, or neither. Many adaptive strategies (both h and hp) have appeared in the literature (see,
for example, Refs. 4 and 5), and some are tied to particular error indicators. The default SIERRA
strategy is independent of any particular mechanics, and requires user specification of two
parameters, a, and a, (with 0 5 a, < a, 5 1), which control the amount of refinement and

unrefinement, respectively. Given the global maximum element error indicator, emax, we compute
the refinement and unrefinement error thresholds, viz.,

Elements k with an error indicator ek > eref are marked for refinement, while those with

ek < eunref are marked for unrefinement. All other elements are unmarked (although they still
could be refined if necessary for enforcing the maximum-allowable 2: 1 refinement-level ratio). It
is evident that decreasing a, increases the amount of refinement, while decreasing a, decreases

the amount of unrefinement. Recall from Section 1 that the element error indicators, ek , are

14

e
e
e
e
e
e
e
e
e
e
e
e
e
e
e
e
e
e
e
e
e
e
e
e
e
e
e
e

e
e
e
e
e
e
e
e
e
e
e
e
a
e

e

computed by the application code. A more detailed discussion of the error indicator computation
is given in Section 4.1.

4 Responsibilities of Application Codes
To use the adaptivity capability in SIERRA, application codes must supply the following:

an a posteriori error indicator (see Fig. 1.1)
prolongation and restriction operators for field variables, as required (see Fig. 1.1)
hanging-node constraints
execution control code

In addition, the application developer may supply an h-adaptive strategy that would override the
SIERRA default strategy described in the previous section. The above components are described
in more detail in Sections 4.1 through 4.4.

4.1 A Posteriori Error Estimation
The role of the aposteriori error indicator is to populate an element variable with some physically
meaningful “error,” which would then be used by the adaptive strategy to mark the element for
refinement (if the error is sufficiently large), unrefinement (if the error is sufficiently small), or
neither. The error indicator need not be an error estimator (which computes an absolute error); it
only needs to supply information on the relative error distribution among the elements.

Most a posteriori error-estimation techniques are strongly dependent on the mechanics and the
partial differential equations. Effective error indicators also usually require knowledge of the
mechanics, such as the use of a first or second derivative of density or Mach number to adapt a
mesh in the vicinity of a shock. In many cases the error indicator is a subset of the error estimator
(e.g., an error indicator might be an element residual or the element contribution to the error
measured in some global norm). Therefore, it is impossible for a computational ‘‘framework” to
provide general error estimators or error indicators to the applications using it. However, SIERRA
does provide services that make it easier to develop these estimators or indicators, especially in a
parallel environment. Hereafter, we drop the term “error indicator” and use only “error estimator”
for simplicity.

In many cases it is necessary to form a local element patch for computing the error estimate. Such
a patch might be formed of elements containing a particular node (a node-based patch) or of
elements connected to a particular element (an element-based patch). Examples of patch-based
error estimators are Zienkiewicz-Zhu (ZZ) [6] and subdomain residual methods [7] . The dynamic
creation of these patches is handled by SIERRA for a given node or element object (see
Fmwk-MeshOb j . h). In order to use this functionality, the application must first instruct SIERRA
to assemble and store the node-to-element connectivity. If the application wants to preserve
memory and not store those connectivities, the patches can alternatively be assembled (directly by
the application) by iterating the standard element-to-node connectivities. In a parallel
environment the situation is more complicated, as shown in Fig. 4.1. The formation of patches for

15

e
e
e
e
e
e
e
e
e
e
e
e
e
e
e
e
e
e
e
e
e
e
e
e
e
e
e
e
e
e
e
e
e
e
e
e
e
e
e
e
e
e
e

nodes or elements on a processor boundary requires communication to neighboring processors. In
this case, (temporary, read-only) ghost objects (nodes and elements) must be constructed before
the patches can be created. All communication and construction of the ghost objects are handled
by SIERRA. The application is responsible for instructing SIERRA to create the ghost objects
(see Fmwk-MeshManuf ac ture . h), and also for deleting the ghost objects when they are no
longer needed. (The capability forpersistent (readable and writeable) ghosting of mesh objects is
planned for future versions of SIERRA. In this case the framework would handle the deleting of
ghost objects, as well as the maintaining of globally consistent updates of their field values, the
reghosting of objects following dynamic load rebalancing or restart, etc.)

PO I P1 PO 1 P1

I ghost elements’ I

Figure 4.1. Generation by SIERRA of a node-based element patch for node x.
The node lies on an interprocessor boundary (see left picture). To create this
patch on processor 0, two elements and three nodes are “ghosted” (see right
picture). These ghost objects are temporary read-only copies that can be
discarded (by processor 0) when the patch is no longer needed.

SIERRA provides many utility functions for helping the application compute an error estimate.
These include functions to compute local (on a given processor) and global (across all processors)
L, norms, as well as local and global element-error minima and maxima. Specifically for the ZZ
error estimator, SIERRA provides a function to register (i.e., tell the framework to allocate
memory for) the recovered nodal gradient on all the mesh nodes. Also provided is a function to
recover the gradient of a scalar nodal variable (see Apub-RecoverGradient . h); the function
includes the local least-squares projection (currently only the projection onto a trilinear
polynomial has been implemented). The application needs to provide only the values of the scalar
gradient and the : 1, x, y, z, xy, y z , xz, xyz) trilinear basis functions at the sampling points in each
element.

Many linite-element error estimators require the solution of local residual problems, a global dual
problem, or both (see, for example, Refs. 5, 7, 8, and 9). While these problems involve the
solution of partial differential equations and therefore must be solved by the mechanics
application, SIERRA does provide services for setting up and handling the data for those
problems. The aposteriori error bounds developed by Paraschivoiu et al. [8], for example, require

16

a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a

a
a

e

e

the solution of three new problems (in addition to the primary problem): (1) a series of local
primal residual problems on a broken “truth” mesh, (2) a global dual problem on the original
coarse mesh, and (3) a series of local dual residual problems on a broken “truth” mesh. Fig. 4.2
shows how the broken “truth” mesh is obtained from the original coarse mesh.

Figure 4.2. Obtaining the broken “truth” mesh. Definitions of (a) an original coarse
“working” mesh; (b) a “truth” mesh, which is a global refinement of the coarse working
mesh; and (c) the broken “truth” mesh, where each piece is a refinement of a single
element in the coarse working mesh. The a posteriori error estimator described in Ref. 8
solves local residual problems independently on each piece of the broken “truth” mesh.

One way this may be addressed in an application is by creating a new SIERRA region (see Ref. 10
for a description of the SIERRA region) for each different problem. This leads to the coexistence
of four regions: the coarse primal region (i.e., the original region used by the application), the
“truth” primal region, the coarse dual region, and the “truth” dual region. Each region has its
own mesh and fields, but the mechanics algorithms can be shared among regions if necessary. For
example, if the differential operator is self-adjoint, the left-hand-side computation for the primal
and dual problems will be the same and, therefore, use the same mechanics algorithms.
Eventually, SIERRA will provide a capability to create these new regions through a pseudocopy
operator, allowing the application to include or exclude algorithms, insert a different mesh, etc.,
into the “copied” region. (This operator is not available in SIERRA Framework Version 3.) Also,
the SIERRA transfer algorithms [10,111 can be used to exchange data between the regions. This is
needed, for example, for computing the right-hand-side residuals for the primal and dual “truth”
problems.

Another class of error estimators is based on extrapolation, such as Richardson extrapolation.
Implementation of these types of error estimators is made much easier with the SIERRA
adaptivity services, particularly the mesh refinement capabilities coupled with the application’s
prolongation operators. The SIERRA transfer operators would also be useful if extrapolation to
arbitrarily sized meshes is desired (i.e., meshes that are not obtained by subdividing coarse
elements).

4.2 Prolongation and Restriction Operators
The prolongation and restriction operators are used to assign new values to field variables on the
newly refined and unrefined mesh objects, respectively. For nodal variables, prolongation often

17

a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
e
a

a
a
a
a

e

e
a

a
a
e
a
a
a
e
a

a

a

e
a

e

involves simply averaging the field values of its parent object’s (edge, face or element) nodes.
There is public code for managing this (in the apublic area of SIERRA) that can be called by
any application. Care must be taken whenever the new node is placed on a nonplanar surface or
material interface and snapped to the actual geometry. (As mentioned in Section 2.1, this
capability is not available as of the release of SIERRA Framework Version 3 .O 1 , but is planned for
the future.) Since the node’s location, in general, would not be at the centroid of its parent face or
edge, special treatment might be necessary. In most cases, no action is required for nodal variables
following unrefinement because the parent nodes are the same ones used in the child elements. In
those instances the nodal restriction operator is a no-op.

Some variables may require a particular type of interpolation (e.g., mass-conserving) following
refinement, while other variables, such as an element error norm, would not require any action
(since the error norm on the child elements would be recomputed following the subsequent
computation on the adapted mesh). The possibilities for prolongation and restriction algorithms,
particularly for element variables, are many. They depend strongly on the specific variable as well
as on the application. Some very simple algorithms are described below.

Copy prolongation operator

This operator might typically be applied for element variables on a uniform strain element. In this
operator, shown in Fig. 4.3, all element values in the parent element are copied to the child
elements.

Parent Element Child Elements

Figure 4.3. Copy prolongation operator.

Copy nearest integration-point prolongation operator

This operator might typically be applied on fully integrated elements for element variables
defined at integration points. As depicted in Fig. 4.4, integration-point values in the parent
element are copied to all of the integration points in the child element that contains the parent
integration point. (We assume here that each child element contains exactly one of its parent’s
integration points.)

18

o Parent Elem IP
Child

Parent Element Child Elements

Figure 4.4. Copy nearest integration-point prolongation operator

Interpolate prolongation operator

This operator might typically be applied on fully integrated elements for element variables
defined at integration points. As depicted in Fig. 4.5, integration-point values in the parent
element are used to calculate a least-squares fit to a linear interpolation. The child integration-
point values are then interpolated. This operator can also be applied to uniform strain elements. In
this case, the least-squares interpolation function is computed on an element-centered patch with
respect to the parent element. The quasi-statics code adagio [121 uses this type of prolongation
operator for the following element variables: stress, rotated stress, and strain energy. The method
used to generate the least-squares function is exactly the same as that used for the ZZ error
estimator (see Section 4.1). Note: In a Lagrangian context, this must be recomputed every
increment if the geometry changes.

Parent Element Child Elements

Figure 4.5. Interpolate prolongation operator

Average restriction operator

This operator is typically applied to a uniform strain formulation element. All element values in
the child elements are averaged and the results copied to the parent element, as shown in Fig. 4.6.

19

a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a

Parent Element Child Elements

Figure 4.6. Average restriction operator.

Average nearest integration-point restriction operator

This operator is typically applied on fully integrated elements for element variables defined at
integration points. Integration-point values in a child element are averaged and copied to the
integration point in the parent element that is contained inside that child element. This is depicted
in Fig. 4.7.

o Parent Elem IP
Child Elem IP

Parent Element Child Elements

Figure 4.7. Average nearest integration-point restriction operator.

Interpolate restriction operator

This operator is typically applied on fully integrated elements for element variables defined at
integration points. Integration-point values in the child element are used to calculate a least-
squares fit to a linear interpolation. The values associated with the parent integration point that
falls in that child element are then interpolated. This is depicted in Fig. 4.8.

20

0 Parent Elem GP
0 Child Elem IP . / I

- v = a + b x + c y -
Parent Element Child Elements

Figure 4.8. Interpolate restriction operator.

4.3 Hanging-Node Constraint Handling
Hanging nodes are created along the transition regions between refinement levels in a mesh. A
simple example is shown in Fig. 4.9. One of two hexahedra is refined, which creates the five
hanging nodes shown in the picture on the right. One hanging node is on the face that separates
the two elements, and the other four are at the midpoints of edges. (It is important to note that
SIERRA does not actually generate these internal faces and edges unless the application code
requests them.) The application developers are responsible for writing the equations to handle
this situation.

Figure 4.9. Creation of hanging nodes following adaptive refinement.

The simplest approach is to constrain the value of any field defined on the node to be the average
of the nodal values of its parent object. For example, the face hanging node in Fig. 4.9 has that
face as its parent. The constraint would force that node’s fields to be the average of the values of
the face’s four comer nodes (this makes sense because the hanging node is at the center of the
face). Similarly, the edge hanging-node field values would be constrained to be the average of the
values of the edge’s two nodes.

21

The fi-amework provides services to assist application developers in writing the constraint
equations. These services include providing a list of all hanging nodes, simple access to the nodes
of the parent object (edge or face), and a way to iterate those nodes.

Application developers are also responsible for enforcing the hanging-node constraints. If linear
solvers are used, enforcement may be possible through a particular linear-solver package.
Constraints may be enforced, for example, with Lagrange multipliers or a penalty formulation.
Finally, application developers are responsible for resolving possible conflicts between
constraints. This might happen if a hanging node is on a Dirichlet boundary, or if a hanging node
is involved in contact.

4.4 Execution Control
The execution control code includes the calls to the SIERRA methods that perform the mesh
refinement and unrefinement. An example containing pseudocode is shown in Fig. 4.10. The code
corresponds very closely with the algorithm flow diagram given in Fig. 1.1.

The control code also contains the logic, such as looping constructs, that might dictate, for
example, how many times the sequence of mesh-adaptation steps gets executed for a single time
step in a transient calculation. Following a single mesh-adaptation sequence, the user may wish to
re-solve for the physics solution on the new mesh (the outer adapt loop), or to speed up execution
(at the expense of accuracy of the error indicator), the user may wish to repeat the adaptation
sequence using the prolongatedhestricted solution, without re-solving (the inner adapt loop).
These kinds of decisions are application driven.

The “MARK ELEMENTS” step in Fig. 4.10 refers to the h-adaptive strategy. The default strategy
(supplied by the framework) was described in Section 3. The framework version is a C t t virtual
method (in the Fmwk-HAdapt class) that can be overloaded by a derived application class.

time loop {
outer adapt loop {

solve physics
inner adapt loop {

compute error indicator
if (stopping criterion) break
MARK ELEMENTS
RESOLVE MARKERS
restrict variables
GLOBAL UPDATE MESH
prolong variables
MESH UPDATE COMPLETION

I
I

I

// Framework or application
// Framework

// Framework

// Framework

Figure 4.10. Example of execution control (pseudo) code driving the adaptivity process. Code such as
this must be supplied inside the application.

The stopping criterion shown both in Fig. 1.1 and Fig. 4.10 is also supplied by the application
code. Usually a stopping criterion would be error-based-if the error (as computed by the error
estimator) is below some tolerance, execution would break out of the adapt loop and proceed to
the next time step. If such a stopping criterion is not implemented, however, the alternative is to
specify (possibly via the input file) a specific number of inner and outer iterations to be executed
at each time step. In the absence of a reliable error estimator, this is perhaps the only alternative.

e
e
e
e
e
e
e
e
e
e
e
e
e
e
e
e
e
e
e
e
e
e
e
e
e
e
e
e
e
e
e
e
e
e
e
e

e
e
e
e
e 23
e

e
e
e
e
e
e
e
e
e
e
e
e
e
e
e
e
e
e
e

e
e
e
e
e
e
e
e
e
e
e
e
e
e
e
e
e
e
e
e
e
e
e

a

References

1. H. C. Edwards. SIERRA Framework Version 3: Core Services Theory and Design.
SAND2002-3616. Albuquerque, NM: San&a National Laboratories, 2002.

2. M. W. Beall and M. S. Shephard. “An Object-Oriented Framework for Reliable Numerical
Simulations.” Engineering with Computers 15, no. 1 (1999): 61-72.

3. K. Devine, B. Hendrickson, E. Boman, M. St. John, and C. Vaughan. Zoltan: A Dynamic
Load-Balancing Library for Parallel Applications - User’s Guide. SAND99-1377.
Albuquerque, N M : San&a National Laboratories, 1999.

4. P. Diez and A. Huerta. “A Unified Approach to Remeshing Strategies for Finite Element h-
Adaptivity.” Computer Methods in Applied Mechanics and Engineering 176 (1 999): 2 15-
229.

5. J. R. Stewart and T. J. R. Hughes. “An A Posteriori Error Estimator and hp-Adaptive
Strategy for Finite Element Discretizations of the Helmholtz Equation in Exterior Domains.”
Finite Elements in Analysis and Design 25 (1 997): 1-26.

6. 0. C. Zienkiewicz and J. Z. Zhu. “A Simple Error Estimator in the Finite Element Method.”
International Journal for Numerical Methods in Engineering 24 (1987): 337-357.

7. I. Babuska and T. Strouboulis. The Finite Element Method and its Reliability. Oxford, UK:
Oxford University Press, 200 1.

8. M. Paraschvoiu, J. Peraire, and A. T. Patera. “A Posteriori Finite Element Bounds for
Linear-Functional Outputs of Elliptic Partial Differential Equations.” Computer Methods in
Applied Mechanics and Engineering 150 (1 997): 289-3 12.

9. D. Estep, M. G. Larson, and R. D. Williams. “Estimating the Error of Numerical Solutions
of Systems of Reaction-Diffusion Equations.” Memoirs of the American Mathematical
Society 146, no. 696 (July 2000).

10. J. R. Stewart and H. C. Edwards. “The SIERRA Framework for Developing Advanced
Parallel Mechanics Applications.” In Proceedings of the First Sandia Workshop on Large-
Scale PDE-Constrained Optimization, Santa Fe, NM, April 4-6,2001, edited by 0. Ghattas,
Springer’s Lecture Notes in Computational Science and Engineering, 200 1.

11. J. R. Stewart, W. R. Witkowski, K. D. Copps, H. C. Edwards, and J. D. Zepper. “Advanced
Technologies for Parallel Adaptive Multiphysics Simulation.’’ In Proceedings of the Fifth
World Congress on Computational Mechanics (WCCM v), Vienna, Austria, July 7-12,
2002, edited by H. A. Mang, F. G. Rammerstorfer, and J. Eberhardsteiner. Vienna, Austria:
Vienna University of Technology. ISBN 3-950 1554-0-6. Available at http://
wccm.tuwien.ac.at.

12. J. A. Mitchell, A. S. Gullerud, W. M. Scherzinger, R. Koteras, and V. L. Porter. “Adagio:
Non-Linear Quasi-Static Structural Response Using the SIERRA Framework.” In

24

Proceedings of the First MIT Conference in Computational Fluid and Structural Mechanics,
361-364. Amsterdam: Elsevier, 2001.

25

a
a
a
a
a
a
a
a
a
a
a
a
a
a
a

a

e
a
a

a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a

a
a
a

a

a

0

a

a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a

a
a
a
a
a
a
a
a
a
a

a
a
a
a
a
a
a
a
a
a
a
a

e

e

e

Distribution

External

Texas Institutute for Computational and Applied Mathematics
University of Texas at Austin
Austin, TX 78712

Attn: J. Tinsley Oden

Lawrence Livermore National Laboratory
P.O. Box 808
Livermore, CA 9455 1-0808

Attn: Evi Dube

Los Alamos National Laboratory
P.O. Box 1663, MS F652
Los Alamos, NM 87545

Attn: James S. Peery

Massachusetts Institute of Technology
77 Massachusetts Avenue, Room 37-45 1
Cambridge, MA 02139

Attn: Jaime Peraire

Colorado State University
Department of Mathematics
10 1 Weber Building
Fort Collins, CO 80523-1 874

Attn: Donald Estep

Rensselaer Polytechnic Institute
110 8th St.
Troy, NY 12 1 80

Attn: Joseph E. Flaherty

Internal

1 MS 0841 9100 T. C. Bickel
1 MS 0835 9140 J. M. McGlaun
5 MS 0835 9113 S. N. Kempka

10 MS 0827 9143 J. D. Zepper
1 MS 0824 9110 A. C. Ratzel

26

a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a

1 MS 0421 9800
1 MS 0834 9114
1 MS 0836 9115
1 MS 0847 9120
1 MS 0824 9130
1 MS 0828 9133
1 MS 0847 921 1
1 MS 1110 9214
1 MS0819 9231
1 MS0139 9900

1 MS 0835 9141
1 MS 0835 9141
1 MS0835 9141
1 MS0835 9141
1 MS 0835 9141
1 MS0835 9141
1 MS 0835 9141
1 MS 0835 9141
1 MS 0835 9141
1 MS 9217 8920
1 MS 9042 8728
1 MS 0826 9113
1 MS 0826 9114
1 MS 0834 9114
1 MS 0834 9114
1 MS 0825 9115
1 MS 0838 9116
1 MS 0828 9133
1 MS0847 9133
1 MS0316 9233
1 MS 0316 9233
1 MS0316 9233

1 MS 0847 9142
1 MS 0847 9142
1 MS 0847 9142
1 MS 0835 9142
1 MS 0847 9142
1 MS 0847 9142
1 MS 0847 9142
1 MS 0847 9142
1 MS 0847 9142

W. L. Hermina,
J. E. Johannes
E. S. Hertel
H. S. Morgan
J. L. Moya
M. Pilch
S. A. Mitchell
D. E. Womble
E. A. Boucheron
M. 0. Vahle

S. W. Bova
R. J. Cochran
S. P. Domino
M. W. Glass
R. R. Lober
A. A. Lorber
P. A. Sackinger
J. H. Strickland
S. R. Subia
C. J. Aro
C . D. Moen
D. R. Noble
E. S. Piekos
M. M. Hopkins
P. K. Notz
J. L. Payne
R. E. Hogan
K. J. Dowding
W. R. Witkowski
C. C. Ober
T. M. Smith
R. Hooper

M. K. Bhardwaj
M. L. Blanford
A. S. Gullerud
J. D. Hales
M. W. Heinstein
S. W. Key
W. S. Klug
J. R. Koteras
N. K. Crane

27

1 MS 0847
1 MS 0835
1 MS0847
1 MS 0847
1 MS 0847
1 MS 0847
1 MS 0807
1 MS 0847
1 MS9217
1 MS0847
1 MS 9405
1 MS 0847

1 MS 0827
1 MS 0827
1 MS 0827
1 MS 0827

20 MS 0827
1 MS 0827
1 MS0827
1 MS 0827
1 MS 0827
1 MS 0827

20 MS 0827
1 MS 0827

1 MS1111
1 MS0819
1 MS0819
1 MS0819
1 MS0819
1 MS0819
1 MS 0847

1 MS9018
2 MS 0899

9142
9142
9142
9142
9142
9 142
9338
9142
9214
9127
8726
921 1

9143
9143
9143
9143
9143
9143
9143
9143
9143
9143
9143
8920

9215
923 1
923 1
923 1
923 1
923 1
9226

8945-1
9616

1 MS0612 9612

J. A. Mitchell
K. H. Pierson
V. L. Porter
T. J. Preston
G. M. Reese
T. F. Walsh
B. H. Cole
K. F. Alvin
M. F. Adams
J. Jung
R. E. Jones
M. S. Eldred

K. M. Aragon
K. N. Belcourt
D. M. Brethauer
K. D. Copps
H. C. Edwards
C. A. Forsythe
M. E. Hamilton
J. R. Overfelt
J. S. Rath
G. D. Sjaardema
J. R. Stewart
A. B. Williams

K. D. Devine
K. H. Brown
K. G. Budge
S. P. Burns
D. E. Carrol
R. R. Drake
S. J. Owen

Central Technical Files
Technical Library
Review & Approval Desk for DOE/OSTI

e
e
e
e
e
e
e
e
e
e
e
e
e
e
e
e
e
e
e
e
e
e
e
e
e
e
e
e
e
e
e
e
e
e
e
e
e
e
e
e
e
e 28
e

	Abstract
	Acknowledgement
	Contents
	Figures
	1 Overview
	2 Framework Adaptivity Services
	2.1 Parallel Mesh Refinement and Unrefinement
	2.2 Dynamic Load Rebalancing

	3 SIERRA Default h-Adaptive Strategy
	4 Responsibilities of Application Codes
	4.1 A Posteriori Error Estimation
	4.2 Prolongation and Restriction Operators
	4.3 Hanging-Node Constraint Handling
	4.4 Execution Control

	References
	Distribution

